Free shipping on orders over $99
AI Engineering

AI Engineering

Building Applications with Foundation Models

by Chip Huyen
Paperback
Publication Date: 07/01/2025

Share This Book:

51%
OFF
RRP  $152.00

RRP means 'Recommended Retail Price' and is the price our supplier recommends to retailers that the product be offered for sale. It does not necessarily mean the product has been offered or sold at the RRP by us or anyone else.

$75.75
or 4 easy payments of $18.94 with
afterpay

Recent breakthroughs in AI have not only increased demand for AI products, they've also lowered the barriers to entry for those who want to build AI products. The model-as-a-service approach has transformed AI from an esoteric discipline into a powerful development tool that anyone can use. Everyone, including those with minimal or no prior AI experience, can now leverage AI models to build applications. In this book, author Chip Huyen discusses AI engineering: the process of building applications with readily available foundation models.

The book starts with an overview of AI engineering, explaining how it differs from traditional ML engineering and discussing the new AI stack. The more AI is used, the more opportunities there are for catastrophic failures, and therefore, the more important evaluation becomes. This book discusses different approaches to evaluating open-ended models, including the rapidly growing AI-as-a-judge approach.

AI application developers will discover how to navigate the AI landscape, including models, datasets, evaluation benchmarks, and the seemingly infinite number of use cases and application patterns. You'll learn a framework for developing an AI application, starting with simple techniques and progressing toward more sophisticated methods, and discover how to efficiently deploy these applications.

  • Understand what AI engineering is and how it differs from traditional machine learning engineering
  • Learn the process for developing an AI application, the challenges at each step, and approaches to address them
  • Explore various model adaptation techniques, including prompt engineering, RAG, fine-tuning, agents, and dataset engineering, and understand how and why they work
  • Examine the bottlenecks for latency and cost when serving foundation models and learn how to overcome them
  • Choose the right model, dataset, evaluation benchmarks, and metrics for your needs

Chip Huyen works to accelerate data analytics on GPUs at Voltron Data. Previously, she was with Snorkel AI and NVIDIA, founded an AI infrastructure startup, and taught Machine Learning Systems Design at Stanford. She's the author of the book Designing Machine Learning Systems, an Amazon bestseller in AI.

AI Engineering builds upon and is complementary to Designing Machine Learning Systems (O'Reilly).

ISBN:
9781098166304
9781098166304
Category:
Enterprise software
Format:
Paperback
Publication Date:
07-01-2025
Language:
English
Publisher:
O'Reilly Media, Incorporated
Country of origin:
United States
Pages:
532
Dimensions (mm):
250x150x15mm
Weight:
0.67kg

This item is In Stock in our Sydney warehouse and should be sent from our warehouse within 1-2 working days.

Once sent we will send you a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro  2 working days

NSW Metro  2 working days

NSW Rural  2 - 3 working days

NSW Remote  2 - 5 working days

NT Metro  3 - 6 working days

NT Remote  4 - 10 working days

QLD Metro  2 - 4 working days

QLD Rural  2 - 5 working days

QLD Remote  2 - 7 working days

SA Metro  2 - 5 working days

SA Rural  3 - 6 working days

SA Remote  3 - 7 working days

TAS Metro  3 - 6 working days

TAS Rural  3 - 6 working days

VIC Metro  2 - 3 working days

VIC Rural  2 - 4 working days

VIC Remote  2 - 5 working days

WA Metro  3 - 6 working days

WA Rural  4 - 8 working days

WA Remote  4 - 12 working days

 

Express Post is available if ALL items in your Shopping Cart are listed as 'In Stock'.

Reviews

Be the first to review AI Engineering.