Free shipping on orders over $99
An Introduction to Optimization

An Introduction to Optimization

With Applications to Machine Learning

by Edwin K. P. ChongWu-Sheng Lu and Stanislaw H. Zak
Hardback
Publication Date: 03/12/2023

Share This Book:

  $317.00
or 4 easy payments of $79.25 with
afterpay
This item qualifies your order for FREE DELIVERY
An Introduction to Optimization

Accessible introductory textbook on optimization theory and methods, with an emphasis on engineering design, featuring MATLAB® exercises and worked examples

Fully updated to reflect modern developments in the field, the Fifth Edition of An Introduction to Optimization fills the need for an accessible, yet rigorous, introduction to optimization theory and methods, featuring innovative coverage and a straightforward approach. The book begins with a review of basic definitions and notations while also providing the related fundamental background of linear algebra, geometry, and calculus.

With this foundation, the authors explore the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. In addition, the book includes an introduction to artificial neural networks, convex optimization, multi-objective optimization, and applications of optimization in machine learning.

Numerous diagrams and figures found throughout the book complement the written presentation of key concepts, and each chapter is followed by MATLAB® exercises and practice problems that reinforce the discussed theory and algorithms.

The Fifth Edition features a new chapter on Lagrangian (nonlinear) duality, expanded coverage on matrix games, projected gradient algorithms, machine learning, and numerous new exercises at the end of each chapter.

An Introduction to Optimization includes information on:

  • The mathematical definitions, notations, and relations from linear algebra, geometry, and calculus used in optimization
  • Optimization algorithms, covering one-dimensional search, randomized search, and gradient, Newton, conjugate direction, and quasi-Newton methods
  • Linear programming methods, covering the simplex algorithm, interior point methods, and duality
  • Nonlinear constrained optimization, covering theory and algorithms, convex optimization, and Lagrangian duality
  • Applications of optimization in machine learning, including neural network training, classification, stochastic gradient descent, linear regression, logistic regression, support vector machines, and clustering.

An Introduction to Optimization is an ideal textbook for a one- or two-semester senior undergraduate or beginning graduate course in optimization theory and methods. The text is also of value for researchers and professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.

ISBN:
9781119877639
9781119877639
Category:
Mathematics
Format:
Hardback
Publication Date:
03-12-2023
Language:
English
Publisher:
John\Wiley#& Sons, Limited
Country of origin:
United Kingdom
Edition:
5th Edition
Dimensions (mm):
259.1x185.4x40.6mm
Weight:
1.29kg

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review An Introduction to Optimization.