Free shipping on orders over $99
Applied Recommender Systems with Python

Applied Recommender Systems with Python

Build Recommender Systems with Deep Learning, NLP and Graph-Based Techniques

by Akshay KulkarniAdarsha Shivananda Anoosh Kulkarni and others
Paperback
Publication Date: 22/11/2022

Share This Book:

  $79.49
or 4 easy payments of $19.87 with
afterpay

This book will teach you how to build recommender systems with machine learning algorithms using Python. Recommender systems have become an essential part of every internet-based business today.

You'll start by learning basic concepts of recommender systems, with an overview of different types of recommender engines and how they function. Next, you will see how to build recommender systems with traditional algorithms such as market basket analysis and content- and knowledge-based recommender systems with NLP. The authors then demonstrate techniques such as collaborative filtering using matrix factorization and hybrid recommender systems that incorporate both content-based and collaborative filtering techniques. This is followed by a tutorial on building machine learning-based recommender systems using clustering and classification algorithms like K-means and random forest. The last chapters cover NLP, deep learning, and graph-based techniques to build a recommender engine. Each chapter includes data preparation, multiple ways to evaluate and optimize the recommender systems, supporting examples, and illustrations.

By the end of this book, you will understand and be able to build recommender systems with various tools and techniques with machine learning, deep learning, and graph-based algorithms.

What You Will Learn

  • Understand and implement different recommender systems techniques with Python
  • Employ popular methods like content- and knowledge-based, collaborative filtering, market basket analysis, and matrix factorization
  • Build hybrid recommender systems that incorporate both content-based and collaborative filtering
  • Leverage machine learning, NLP, and deep learning for building recommender systems


Who This Book Is ForData scientists, machine learning engineers, and Python programmers interested in building and implementing recommender systems to solve problems.
ISBN:
9781484289532
9781484289532
Category:
Web programming
Format:
Paperback
Publication Date:
22-11-2022
Language:
English
Publisher:
Apress L. P.
Country of origin:
United States
Dimensions (mm):
254x178mm
Weight:
0.51kg

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Applied Recommender Systems with Python.