Free shipping on orders over $99
Big Data Fundamentals

Big Data Fundamentals

Concepts, Drivers and Techniques

by Thomas ErlWajid Khattak and Paul Buhler
Paperback
Publication Date: 05/01/2016

Share This Book:

36%
OFF
RRP  $60.95

RRP means 'Recommended Retail Price' and is the price our supplier recommends to retailers that the product be offered for sale. It does not necessarily mean the product has been offered or sold at the RRP by us or anyone else.

$39.25
or 4 easy payments of $9.81 with
afterpay
"This text should be required reading for everyone in contemporary business."
--Peter Woodhull, CEO, Modus21

"The one book that clearly describes and links Big Data concepts to business utility."
--Dr. Christopher Starr, PhD

"Simply, this is the best Big Data book on the market "
--Sam Rostam, Cascadian IT Group

"...one of the most contemporary approaches I've seen to Big Data fundamentals..."
--Joshua M. Davis, PhD

The Definitive Plain-English Guide to Big Data for Business and Technology Professionals

Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams.

The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages.

  • Discovering Big Data's fundamental concepts and what makes it different from previous forms of data analysis and data science
  • Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation
  • Planning strategic, business-driven Big Data initiatives
  • Addressing considerations such as data management, governance, and security
  • Recognizing the 5 "V" characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value
  • Clarifying Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts
  • Working with Big Data in structured, unstructured, semi-structured, and metadata formats
  • Increasing value by integrating Big Data resources with corporate performance monitoring
  • Understanding how Big Data leverages distributed and parallel processing
  • Using NoSQL and other technologies to meet Big Data's distinct data processing requirements
  • Leveraging statistical approaches of quantitative and qualitative analysis
  • Applying computational analysis methods, including machine learning

ISBN:
9780134291079
9780134291079
Category:
Data warehousing
Format:
Paperback
Publication Date:
05-01-2016
Language:
English
Publisher:
Pearson Higher Education & Professional Group
Country of origin:
United States
Dimensions (mm):
228.6x175.26x17.78mm
Weight:
0.39kg

This item is In Stock in our Sydney warehouse and should be sent from our warehouse within 1-2 working days.

Once sent we will send you a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro  2 working days

NSW Metro  2 working days

NSW Rural  2 - 3 working days

NSW Remote  2 - 5 working days

NT Metro  3 - 6 working days

NT Remote  4 - 10 working days

QLD Metro  2 - 4 working days

QLD Rural  2 - 5 working days

QLD Remote  2 - 7 working days

SA Metro  2 - 5 working days

SA Rural  3 - 6 working days

SA Remote  3 - 7 working days

TAS Metro  3 - 6 working days

TAS Rural  3 - 6 working days

VIC Metro  2 - 3 working days

VIC Rural  2 - 4 working days

VIC Remote  2 - 5 working days

WA Metro  3 - 6 working days

WA Rural  4 - 8 working days

WA Remote  4 - 12 working days

 

Express Post is available if ALL items in your Shopping Cart are listed as 'In Stock'.

Reviews

Be the first to review Big Data Fundamentals.