Shock Wave Propagation in Cementitious Materials at Micro/Meso Scales.- The Role of Metal Foams in Blast Mitigation and Related Trauma Reduction.- Novel Architectures and Coatings in Composite Materials for the Mitigation of Air and Underwater Shock Loadings.- Damage in Carbon Fiber Based Marine Composites Under Impact/Blast Loading and the Concept of Tuned Microstructure with Additive Manufacturing.- Modeling and Microstructure Design of Dissipative Elastic Metamaterials for Blast Wave Mitigation.- Response of Polyurea Coated Composite Plates Subjected to Underwater Explosive Loading: Experimental and Computational.- Shock Interactions with Structures and Their Associated Induced Flows.- Blast Mitigation Effects of Foam-Core, Composite Sandwich Structures.- Blast Response of Marine Composites.- Explosion Induced Shock Waves through a Medium and Structural Response.- Enhancing Interlaminar Damage Resistance in Woven Composites. Material Chemistry Level Modeling in Cementitious Materials.- Blast Mitigation through Techniques to steer the Blast Wave by Designing Metamaterials.- Underwater Explosions: Blast Resistance of Marine Structures.- Blast Mitigation: Materials, Testing and Challenges.- Fracture Initiation and Propagation in Marine Polymers subjected to High Strain Rate Impact.- Scaling of the Dynamic Response and Failure Mechanisms of Adaptive Composite Marine Propulsors.- An Overview of the IISc Blast Tube Research Activities.- Damage Initiation and Propagation in Blast Loaded Sandwich Structures considering Material and Geometric Nonlinearities.- Stress triaxiality in damage models for simulation of impact dynamic response.- Blast Deformation and Damage to Composite Laminates.
![Blast Mitigation Strategies in Marine Composite and Sandwich Structures Blast Mitigation Strategies in Marine Composite and Sandwich Structures](https://www.angusrobertson.com.au/images/9789811355981.jpg?width=250)
Share This Book: