This book provides an overview of crowdsourced data management. Covering all aspects including the workflow, algorithms and research potential, it particularly focuses on the latest techniques and recent advances. The authors identify three key aspects in determining the performance of crowdsourced data management: quality control, cost control and latency control. By surveying and synthesizing a wide spectrum of studies on crowdsourced data management, the book outlines important factors that need to be considered to improve crowdsourced data management. It also introduces a practical crowdsourced-database-system design and presents a number of crowdsourced operators. Self-contained and covering theory, algorithms, techniques and applications, it is a valuable reference resource for researchers and students new to crowdsourced data management with a basic knowledge of data structures and databases.
Hybrid Human-Machine Data Management
- ISBN:
- 9789811078460
- 9789811078460
- Category:
- Mobile & handheld device programming / Apps programming
- Format:
- Hardback
- Publication Date:
- 13-06-2018
- Language:
- English
- Publisher:
- Springer
- Country of origin:
- United States
- Dimensions (mm):
- 235x155mm
- Weight:
- 0.45kg
This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.
Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.
Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:
Click on Save to My Library / Lists
Click on My Library / My Lists and I will take you there
Share This Book: