Delivering a novel service framework to manage crowdsourced sensor data provides high-level abstraction (i.e., sensor-cloud service) to model crowdsourced sensor data from functional and non-functional perspectives, seamlessly turning the raw data into "ready to go" services. A creative indexing model is developed to capture and manage the spatio-temporal dynamism of crowdsourced service providers.
Delivering novel frameworks to compose crowdsourced sensor-cloud services is vital. These frameworks focuses on spatio-temporal composition of crowdsourced sensor-cloud services, which is a new territory for existing service oriented computing research. A creative failure-proof model is also designed to prevent composition failure caused by fluctuating QoS.
Delivering an incentive model to drive the coverage of crowdsourced service providers is also vital. A new spatio-temporal incentive model targets changing coverage of the crowdsourced providers to achieve demanded coverage of crowdsourced sensor-cloud services within a region.
The outcome of this research is expected to potentially create a sensor services crowdsourcing market and new commercial opportunities focusing on crowdsourced data based applications. The crowdsourced community based approach adds significant value to journey planning and map services thus creating a competitive edge for a technologically-minded companies incentivizing new start-ups, thus enabling higher market innovation.
This book primarily targets researchers and practitioners, who conduct research work in service oriented computing, Internet of Things (IoT), smart city and spatio-temporal travel planning, as well as advanced-level students studying this field. Small and Medium Entrepreneurs, who invest in crowdsourced IoT services and journey planning infrastructures, will also want to purchase this book.
Share This Book: