Free shipping on orders over $99
Deep Learning Approaches for Security Threats in IoT Environments

Deep Learning Approaches for Security Threats in IoT Environments

by Nour MoustafaMohamed Abdel-Basset and Hossam Hawash
Hardback
Publication Date: 21/12/2022

Share This Book:

41%
OFF
RRP  $248.95

RRP means 'Recommended Retail Price' and is the price our supplier recommends to retailers that the product be offered for sale. It does not necessarily mean the product has been offered or sold at the RRP by us or anyone else.

$148.35
or 4 easy payments of $37.09 with
afterpay
This item qualifies your order for FREE DELIVERY
Deep Learning Approaches for Security Threats in IoT Environments

An expert discussion of the application of deep learning methods in the IoT security environment

In Deep Learning Approaches for Security Threats in IoT Environments, a team of distinguished cybersecurity educators deliver an insightful and robust exploration of how to approach and measure the security of Internet-of-Things (IoT) systems and networks. In this book, readers will examine critical concepts in artificial intelligence (AI) and IoT, and apply effective strategies to help secure and protect IoT networks. The authors discuss supervised, semi-supervised, and unsupervised deep learning techniques, as well as reinforcement and federated learning methods for privacy preservation.

This book applies deep learning approaches to IoT networks and solves the security problems that professionals frequently encounter when working in the field of IoT, as well as providing ways in which smart devices can solve cybersecurity issues.

Readers will also get access to a companion website with PowerPoint presentations, links to supporting videos, and additional resources. They'll also find:

  • A thorough introduction to artificial intelligence and the Internet of Things, including key concepts like deep learning, security, and privacy
  • Comprehensive discussions of the architectures, protocols, and standards that form the foundation of deep learning for securing modern IoT systems and networks
  • In-depth examinations of the architectural design of cloud, fog, and edge computing networks
  • Fulsome presentations of the security requirements, threats, and countermeasures relevant to IoT networks

Perfect for professionals working in the AI, cybersecurity, and IoT industries, Deep Learning Approaches for Security Threats in IoT Environments will also earn a place in the libraries of undergraduate and graduate students studying deep learning, cybersecurity, privacy preservation, and the security of IoT networks.

ISBN:
9781119884149
9781119884149
Category:
Data encryption
Format:
Hardback
Publication Date:
21-12-2022
Language:
English
Publisher:
John\Wiley#& Sons, Incorporated
Country of origin:
United States
Dimensions (mm):
216x140x24mm
Weight:
0.69kg

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Deep Learning Approaches for Security Threats in IoT Environments.