Free shipping on orders over $99
Enhancing Deep Learning with Bayesian Inference

Enhancing Deep Learning with Bayesian Inference

Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python

by Matt BenatanJochem Gietema and Marian Schneider
Paperback
Publication Date: 30/06/2023

Share This Book:

  $109.85
or 4 easy payments of $27.46 with
afterpay
This item qualifies your order for FREE DELIVERY
Develop Bayesian Deep Learning models to help make your own applications more robust.

Key Features

  • Gain insights into the limitations of typical neural networks
  • Acquire the skill to cultivate neural networks capable of estimating uncertainty
  • Discover how to leverage uncertainty to develop more robust machine learning systems

Book Description

Deep learning has an increasingly significant impact on our lives, from suggesting content to playing a key role in mission- and safety-critical applications. As the influence of these algorithms grows, so does the concern for the safety and robustness of the systems which rely on them. Simply put, typical deep learning methods do not know when they don't know.The field of Bayesian Deep Learning contains a range of methods for approximate Bayesian inference with deep networks. These methods help to improve the robustness of deep learning systems as they tell us how confident they are in their predictions, allowing us to take more in how we incorporate model predictions within our applications.Through this book, you will be introduced to the rapidly growing field of uncertainty-aware deep learning, developing an understanding of the importance of uncertainty estimation in robust machine learning systems. You will learn about a variety of popular Bayesian Deep Learning methods, and how to implement these through practical Python examples covering a range of application scenarios.By the end of the book, you will have a good understanding of Bayesian Deep Learning and its advantages, and you will be able to develop Bayesian Deep Learning models for safer, more robust deep learning systems.

What you will learn

  • Understand advantages and disadvantages of Bayesian inference and deep learning
  • Understand the fundamentals of Bayesian Neural Networks
  • Understand the differences between key BNN implementations/approximations
  • Understand the advantages of probabilistic DNNs in production contexts
  • How to implement a variety of BDL methods in Python code
  • How to apply BDL methods to real-world problems
  • Understand how to evaluate BDL methods and choose the best method for a given task
  • Learn how to deal with unexpected data in real-world deep learning applications

Who this book is for

This book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models.

]]>
ISBN:
9781803246888
9781803246888
Category:
Science: general issues
Format:
Paperback
Publication Date:
30-06-2023
Language:
English
Publisher:
Packt Publishing Limited
Country of origin:
United Kingdom
Dimensions (mm):
2349.5x1905mm

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Enhancing Deep Learning with Bayesian Inference.