The first part of this book (II) focuses on data technologies in relation to agriculture and presents three key points in data management, namely, data collection, data fusion, and their uses in machine learning and artificial intelligent technologies. Part 2 is devoted to the integration of these technologies in agricultural production processes by presenting specific applications in the domain. Part 3 examines the added value of data management within agricultural products value chain.
The book provides an exceptional reference for those researching and working in or adjacent to agricultural production, including engineers in machine learning and AI, operations management, decision analysis, information analysis, to name just a few.
Specific advances covered in the volume:
- Big data management from heterogenous sources
- Data mining within large data sets
- Data fusion and visualization
- IoT based management systems
- Data Knowledge Management for converting data into valuable information
- Metadata and data standards for expanding knowledge through different data platforms
- AI - based image processing for agricultural systems
- Data - based agricultural business
- Machine learning application in agricultural products value chain
Share This Book: