Offers an overview of the MM principle, a device for deriving optimization algorithms satisfying the ascent or descent property. These algorithms can:
- Separate the variables of a problem.
- Avoid large matrix inversions.
- Linearize a problem.
- Restore symmetry.
- Deal with equality and inequality constraints gracefully.
- Turn a non-differentiable problem into a smooth problem.
-
The author:
- Presents the first extended treatment of MM algorithms, which are ideal for high-dimensional optimization problems in data mining, imaging, and genomics.
- Derives numerous algorithms from a broad diversity of application areas, with a particular emphasis on statistics, biology, and data mining.
- Summarizes a large amount of literature that has not reached book form before.
This title is in stock with our overseas supplier and should arrive at our Sydney warehouse within 3 - 5 weeks of you placing an order.
Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.
Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:
ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days
Share This Book: