Free shipping on orders over $99
Model Optimization Methods for Efficient and Edge AI

Model Optimization Methods for Efficient and Edge AI

Federated Learning Architectures, Frameworks and Applications

by Pethuru Raj ChelliahAmir Masoud Rahmani Robert Colby and others
Hardback
Publication Date: 03/12/2024

Share This Book:

RRP  $273.85

RRP means 'Recommended Retail Price' and is the price our supplier recommends to retailers that the product be offered for sale. It does not necessarily mean the product has been offered or sold at the RRP by us or anyone else.

$268.50
or 4 easy payments of $67.12 with
afterpay
This item qualifies your order for FREE DELIVERY

Comprehensive overview of the fledgling domain of federated learning (FL), explaining emerging FL methods, architectural approaches, enabling frameworks, and applications

Model Optimization Methods for Efficient and Edge AI explores AI model engineering, evaluation, refinement, optimization, and deployment across multiple cloud environments (public, private, edge, and hybrid). It presents key applications of the AI paradigm, including computer vision (CV) and Natural Language Processing (NLP), explaining the nitty-gritty of federated learning (FL) and how the FL method is helping to fulfill AI model optimization needs. The book also describes tools that vendors have created, including FL frameworks and platforms such as PySyft, Tensor Flow Federated (TFF), FATE (Federated AI Technology Enabler), Tensor/IO, and more.

The first part of the text covers popular AI and ML methods, platforms, and applications, describing leading AI frameworks and libraries in order to clearly articulate how these tools can help with visualizing and implementing highly flexible AI models quickly. The second part focuses on federated learning, discussing its basic concepts, applications, platforms, and its potential in edge systems (such as IoT).

Other topics covered include:

  • Building AI models that are destined to solve several problems, with a focus on widely articulated classification, regression, association, clustering, and other prediction problems
  • Generating actionable insights through a variety of AI algorithms, platforms, parallel processing, and other enablers
  • Compressing AI models so that computational, memory, storage, and network requirements can be substantially reduced
  • Addressing crucial issues such as data confidentiality, data access rights, data protection, and access to heterogeneous data
  • Overcoming cyberattacks on mission-critical software systems by leveraging federated learning
ISBN:
9781394219216
9781394219216
Category:
Mathematics
Format:
Hardback
Publication Date:
03-12-2024
Language:
English
Publisher:
John\Wiley#& Sons, Incorporated
Country of origin:
United States
Dimensions (mm):
250x150x15mm
Weight:
0.67kg

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Model Optimization Methods for Efficient and Edge AI.