Free shipping on orders over $99
Nuclear Magnetic Resonance Studies of Interfacial Phenomena

Nuclear Magnetic Resonance Studies of Interfacial Phenomena

by Vladimir V. Turov and Vladimir M. Gun'ko
Hardback
Publication Date: 08/04/2013

Share This Book:

29%
OFF
RRP  $389.00

RRP means 'Recommended Retail Price' and is the price our supplier recommends to retailers that the product be offered for sale. It does not necessarily mean the product has been offered or sold at the RRP by us or anyone else.

$278.00
or 4 easy payments of $69.50 with
afterpay
    Please Note: We will source your item through a special order. Generally sent within 120 days.
This item qualifies your order for FREE DELIVERY
Properties and applications of high surface area materials depend on interfacial phenomena, including diffusion, sorption, dissolution, solvation, surface reactions, catalysis, and phase transitions. Among the physicochemical methods that give useful information regarding these complex phenomena, nuclear magnetic resonance (NMR) spectroscopy is the most universal, yielding detailed structural data regarding molecules, solids, and interfaces. Nuclear Magnetic Resonance Studies of Interfacial Phenomena summarizes NMR research results collected over the past three decades for a wide range of materials-from nanomaterials and nanocomposites to biomaterials, cells, tissues, and seeds.

This book describes the applications of important new NMR spectroscopic methods to a variety of useful materials and compares them with results from other techniques such as adsorption, differential scanning calorimetry, thermally stimulated depolarization current, dielectric relaxation spectroscopy, infrared spectroscopy, optical microscopy, and small-angle and wide-angle x-ray scattering. The text explores the application of NMR spectroscopy to examine interfacial phenomena in objects of increasing complexity, beginning with unmodified and modified silica materials. It then describes properties of various mixed oxides with comparisons to individual oxides and also describes carbon materials such as graphite and carbon nanotubes.

Chapters deal with carbon-mineral hybrids and their mosaic surface structures, and interfacial phenomena at the surface of natural and synthetics polymers. They also explore a variety of biosystems, which are much more complex, including biomacromolecules (proteins, DNA, and lipids), cells and tissues, and seeds and herbs. The authors cover trends in interfacial phenomena investigations, and the final chapter describes NMR and other methods used in the book. This text presents a comprehensive description of a large array of hard and soft materials, allowing the analysis of the structure-property relationships and generalities on the interfacial behavior of materials and adsorbates.
ISBN:
9781466551688
9781466551688
Category:
Environmental science
Format:
Hardback
Publication Date:
08-04-2013
Language:
English
Publisher:
Taylor & Francis Inc
Country of origin:
United States
Pages:
1040
Dimensions (mm):
254x178x64mm
Weight:
2.02kg

Our Australian supplier has this title on order. You can place a backorder for this title now and we will ship it to you when it becomes available. 

While we are unable to provide a delivery estimate, most backorders will be delivered within 120 days. If we are informed by our supplier that the title is no longer available during this time, we will cancel and refund you for this item.  Likewise, if no delivery estimate has been provided within 120 days, we will contact our supplier for an update.  If there is still no delivery estimate we will then cancel the item and provided you with a refund.

If we are able to secure you a copy of the title, our supplier will despatch it to our Sydney warehouse.  Once received we make sure it is in perfect condition and then despatch it to you via the Australia Post eParcel service, which includes online tracking.  You will receive a shipping notice from us when this occurs.

Reviews

Be the first to review Nuclear Magnetic Resonance Studies of Interfacial Phenomena.