Free shipping on orders over $99
On the Tangent Space to the Space of Algebraic Cycles on a Smooth Algebraic Variety. (AM-157)

On the Tangent Space to the Space of Algebraic Cycles on a Smooth Algebraic Variety. (AM-157)

by Mark Green and Phillip A. Griffiths
Paperback
Publication Date: 09/01/2005

Share This Book:

34%
OFF
RRP  $140.00

RRP means 'Recommended Retail Price' and is the price our supplier recommends to retailers that the product be offered for sale. It does not necessarily mean the product has been offered or sold at the RRP by us or anyone else.

$93.75
or 4 easy payments of $23.44 with
afterpay
This item qualifies your order for FREE DELIVERY
In recent years, considerable progress has been made in studying algebraic cycles using infinitesimal methods. These methods have usually been applied to Hodge-theoretic constructions such as the cycle class and the Abel-Jacobi map. Substantial advances have also occurred in the infinitesimal theory for subvarieties of a given smooth variety, centered around the normal bundle and the obstructions coming from the normal bundle's first cohomology group. Here, Mark Green and Phillip Griffiths set forth the initial stages of an infinitesimal theory for algebraic cycles. The book aims in part to understand the geometric basis and the limitations of Spencer Bloch's beautiful formula for the tangent space to Chow groups. Bloch's formula is motivated by algebraic K-theory and involves differentials over Q. The theory developed here is characterized by the appearance of arithmetic considerations even in the local infinitesimal theory of algebraic cycles. The map from the tangent space to the Hilbert scheme to the tangent space to algebraic cycles passes through a variant of an interesting construction in commutative algebra due to Angeniol and Lejeune-Jalabert.
The link between the theory given here and Bloch's formula arises from an interpretation of the Cousin flasque resolution of differentials over Q as the tangent sequence to the Gersten resolution in algebraic K-theory. The case of 0-cycles on a surface is used for illustrative purposes to avoid undue technical complications.
ISBN:
9780691120447
9780691120447
Category:
Algebraic geometry
Format:
Paperback
Publication Date:
09-01-2005
Language:
English
Publisher:
Princeton University Press
Country of origin:
United States
Pages:
208
Dimensions (mm):
235x152x11mm
Weight:
0.03kg

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 1 - 2 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

You can find this item in:

Show more Show less

Reviews

Be the first to review On the Tangent Space to the Space of Algebraic Cycles on a Smooth Algebraic Variety. (AM-157).