Free shipping on orders over $99
Probability and Bayesian Modeling

Probability and Bayesian Modeling

by Jim Albert and Jingchen Hu
Hardback
Publication Date: 18/12/2019

Share This Book:

33%
OFF
RRP  $179.00

RRP means 'Recommended Retail Price' and is the price our supplier recommends to retailers that the product be offered for sale. It does not necessarily mean the product has been offered or sold at the RRP by us or anyone else.

$121.25
or 4 easy payments of $30.31 with
afterpay
This item qualifies your order for FREE DELIVERY

Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors' research.

This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection.

The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book.

A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.

ISBN:
9781138492561
9781138492561
Category:
Probability & statistics
Format:
Hardback
Publication Date:
18-12-2019
Language:
English
Publisher:
CRC Press LLC
Country of origin:
United States
Dimensions (mm):
237x163x33mm
Weight:
1.02kg

This item is In Stock in our Sydney warehouse and should be sent from our warehouse within 1-2 working days.

Once sent we will send you a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro  2 working days

NSW Metro  2 working days

NSW Rural  2 - 3 working days

NSW Remote  2 - 5 working days

NT Metro  3 - 6 working days

NT Remote  4 - 10 working days

QLD Metro  2 - 4 working days

QLD Rural  2 - 5 working days

QLD Remote  2 - 7 working days

SA Metro  2 - 5 working days

SA Rural  3 - 6 working days

SA Remote  3 - 7 working days

TAS Metro  3 - 6 working days

TAS Rural  3 - 6 working days

VIC Metro  2 - 3 working days

VIC Rural  2 - 4 working days

VIC Remote  2 - 5 working days

WA Metro  3 - 6 working days

WA Rural  4 - 8 working days

WA Remote  4 - 12 working days

 

Express Post is available if ALL items in your Shopping Cart are listed as 'In Stock'.

Reviews

Be the first to review Probability and Bayesian Modeling.