Free shipping on orders over $99
Python Reinforcement Learning

Python Reinforcement Learning

Solve complex real-world problems by mastering reinforcement learning algorithms using OpenAI Gym and TensorFlow

by Sudharsan RavichandiranSean Saito Rajalingappaa Shanmugamani and others
Paperback
Publication Date: 18/04/2019

Share This Book:

  $95.42
or 4 easy payments of $23.85 with
afterpay
This item qualifies your order for FREE DELIVERY
Apply modern reinforcement learning and deep reinforcement learning methods using Python and its powerful libraries

Key Features

Your entry point into the world of artificial intelligence using the power of Python
An example-rich guide to master various RL and DRL algorithms
Explore the power of modern Python libraries to gain confidence in building self-trained applications

Book DescriptionReinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms.

The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL.

By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems.

This Learning Path includes content from the following Packt products:



Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran
Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa Shanmugamani

What you will learn

Train an agent to walk using OpenAI Gym and TensorFlow
Solve multi-armed-bandit problems using various algorithms
Build intelligent agents using the DRQN algorithm to play the Doom game
Teach your agent to play Connect4 using AlphaGo Zero
Defeat Atari arcade games using the value iteration method
Discover how to deal with discrete and continuous action spaces in various environments

Who this book is forIf you're an ML/DL enthusiast interested in AI and want to explore RL and deep RL from scratch, this Learning Path is for you. Prior knowledge of linear algebra is expected.
ISBN:
9781838649777
9781838649777
Category:
Neural networks & fuzzy systems
Format:
Paperback
Publication Date:
18-04-2019
Publisher:
Packt Publishing Limited
Country of origin:
United Kingdom
Pages:
496
Dimensions (mm):
93x75mm

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Python Reinforcement Learning.