Free shipping on orders over $99
Python Social Media Analytics

Python Social Media Analytics

by Michal Krystyanczuk and Siddhartha Chatterjee
Paperback
Publication Date: 28/07/2017

Share This Book:

  $104.94
or 4 easy payments of $26.23 with
afterpay
This item qualifies your order for FREE DELIVERY
Leverage the power of Python to collect, process, and mine deep insights from social media dataAbout This Book* Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more* Analyze and extract actionable insights from your social data using various Python tools* A highly practical guide to conducting efficient social media analytics at scaleWho This Book Is ForIf you are a programmer or a data analyst familiar with the Python programming language and want to perform analyses of your social data to acquire valuable business insights, this book is for you. The book does not assume any prior knowledge of any data analysis tool or process.What You Will Learn* Understand the basics of social media mining* Use PyMongo to clean, store, and access data in MongoDB* Understand user reactions and emotion detection on Facebook* Perform Twitter sentiment analysis and entity recognition using Python* Analyze video and campaign performance on YouTube* Mine popular trends on GitHub and predict the next big technology* Extract conversational topics on public internet forums* Analyze user interests on Pinterest* Perform large-scale social media analytics on the cloudIn DetailSocial Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics, and how you can leverage its capabilities to empower your business.Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using various Python APIs. This book explains how to structure the clean data obtained and store in MongoDB using PyMongo. You will also perform web scraping and visualize data using Scrappy and Beautifulsoup.Finally, you will be introduced to different techniques to perform analytics at scale for your social data on the cloud, using Python and Spark. By the end of this book, you will be able to utilize the power of Python to gain valuable insights from social media data and use them to enhance your business processes.Style and approachThis book follows a step-by-step approach to teach readers the concepts of social media analytics using the Python programming language. To explain various data analysis processes, real-world datasets are used wherever required.
ISBN:
9781787121485
9781787121485
Category:
Database design & theory
Format:
Paperback
Publication Date:
28-07-2017
Language:
English
Publisher:
Packt Publishing Limited
Country of origin:
United Kingdom

This title is in stock with our Australian supplier and should arrive at our Sydney warehouse within 2 - 3 weeks of you placing an order.

Once received into our warehouse we will despatch it to you with a Shipping Notification which includes online tracking.

Please check the estimated delivery times below for your region, for after your order is despatched from our warehouse:

ACT Metro: 2 working days
NSW Metro: 2 working days
NSW Rural: 2-3 working days
NSW Remote: 2-5 working days
NT Metro: 3-6 working days
NT Remote: 4-10 working days
QLD Metro: 2-4 working days
QLD Rural: 2-5 working days
QLD Remote: 2-7 working days
SA Metro: 2-5 working days
SA Rural: 3-6 working days
SA Remote: 3-7 working days
TAS Metro: 3-6 working days
TAS Rural: 3-6 working days
VIC Metro: 2-3 working days
VIC Rural: 2-4 working days
VIC Remote: 2-5 working days
WA Metro: 3-6 working days
WA Rural: 4-8 working days
WA Remote: 4-12 working days

Reviews

Be the first to review Python Social Media Analytics.