Graph Theory has proved to be an extremely useful tool for solving combinatorial problems in such diverse areas as Geometry, Algebra, Number Theory, Topology, Operations Research and Optimization. It is natural to attempt to generalise the concept of a graph, in order to attack additional combinatorial problems. The idea of looking at a family of sets from this standpoint took shape around 1960. In regarding each set as a ``generalised edge'' and in calling the family itself a ``hypergraph'', the initial idea was to try to extend certain classical results of Graph Theory such as the theorems of Turán and König. It was noticed that this generalisation often led to simplification; moreover, one single statement, sometimes remarkably simple, could unify several theorems on graphs. This book presents what seems to be the most significant work on hypergraphs.
- ISBN:
- 9780080880235
- 9780080880235
- Category:
- Discrete mathematics
- Format:
- Epub (Kobo), Epub (Adobe)
- Publication Date:
- 01-05-1984
- Language:
- English
- Publisher:
- Elsevier Science
This item is delivered digitally
Great!
Click on Save to My Library / Lists
Click on Save to My Library / Lists
Select the List you'd like to categorise as, or add your own
Here you can mark if you have read this book, reading it or want to read
Awesome! You added your first item into your Library
Great! The fun begins.
Click on My Library / My Lists and I will take you there
Click on My Library / My Lists and I will take you there
Reviews
Be the first to review Hypergraphs.
Share This eBook: