Privacy Preservation in IoT: Machine Learning Approaches

Privacy Preservation in IoT: Machine Learning Approaches

by Youyang QuLongxiang Gao Shui Yu and others
Epub (Kobo), Epub (Adobe)
Publication Date: 20/02/2023

Share This eBook:

  $81.99

This book aims to sort out the clear logic of the development of machine learning-driven privacy preservation in IoTs, including the advantages and disadvantages, as well as the future directions in this under-explored domain. In big data era, an increasingly massive volume of data is generated and transmitted in Internet of Things (IoTs), which poses great threats to privacy protection. Motivated by this, an emerging research topic, machine learning-driven privacy preservation, is fast booming to address various and diverse demands of IoTs. However, there is no existing literature discussion on this topic in a systematically manner.


The issues of existing privacy protection methods (differential privacy, clustering, anonymity, etc.) for IoTs, such as low data utility, high communication overload, and unbalanced trade-off, are identified to the necessity of machine learning-driven privacy preservation. Besides, the leading and emerging attacks pose further threats to privacy protection in this scenario. To mitigate the negative impact, machine learning-driven privacy preservation methods for IoTs are discussed in detail on both the advantages and flaws, which is followed by potentially promising research directions.


Readers may trace timely contributions on machine learning-driven privacy preservation in IoTs. The advances cover different applications, such as cyber-physical systems, fog computing, and location-based services. This book will be of interest to forthcoming scientists, policymakers, researchers, and postgraduates.

ISBN:
9789811917974
9789811917974
Category:
Computer security
Format:
Epub (Kobo), Epub (Adobe)
Publication Date:
20-02-2023
Language:
English
Publisher:
Springer Nature Singapore

This item is delivered digitally

Reviews

Be the first to review Privacy Preservation in IoT: Machine Learning Approaches.