Schubert Calculus and Its Applications in Combinatorics and Representation Theory

Schubert Calculus and Its Applications in Combinatorics and Representation Theory

by Jianxun HuChangzheng Li and Leonardo C. Mihalcea
Epub (Kobo), Epub (Adobe)
Publication Date: 25/11/2020

Share This eBook:

 

This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way.


The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.

ISBN:
9789811574511
9789811574511
Category:
Calculus & mathematical analysis
Format:
Epub (Kobo), Epub (Adobe)
Publication Date:
25-11-2020
Language:
English
Publisher:
Springer Nature Singapore

Click 'Notify Me' to get an email alert when this item becomes available

Reviews

Be the first to review Schubert Calculus and Its Applications in Combinatorics and Representation Theory.