Spatial Regression Analysis Using Eigenvector Spatial Filtering

Spatial Regression Analysis Using Eigenvector Spatial Filtering

by Daniel GriffithYongwan Chun and Bin Li
Epub (Kobo), Epub (Adobe)
Publication Date: 27/09/2019

Share This eBook:

  $202.99

Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter.


This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre.



  • Reviews the uses of ESF across linear regression, generalized linear regression, spatial autocorrelation measurement, and spatially varying coefficient models

  • Includes computer code and template datasets for further modeling

  • Provides comprehensive coverage of related concepts in spatial data analysis and spatial statistics

ISBN:
9780128156926
9780128156926
Category:
Economics
Format:
Epub (Kobo), Epub (Adobe)
Publication Date:
27-09-2019
Language:
English
Publisher:
Elsevier Science

This item is delivered digitally

You can find this item in:

Show more Show less

Reviews

Be the first to review Spatial Regression Analysis Using Eigenvector Spatial Filtering.