The Gross-Zagier Formula on Shimura Curves

The Gross-Zagier Formula on Shimura Curves

by Wei ZhangShou-wu Zhang and Xinyi Yuan
Epub (Kobo), Epub (Adobe)
Publication Date: 11/11/2012

Share This eBook:

  $165.99

This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations.


The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross-Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross-Zagier formula is reduced to local formulas.


The Gross-Zagier Formula on Shimura Curves will be of great use to students wishing to enter this area and to those already working in it.

ISBN:
9781400845644
9781400845644
Category:
Number theory
Format:
Epub (Kobo), Epub (Adobe)
Publication Date:
11-11-2012
Language:
English
Publisher:
Princeton University Press

This item is delivered digitally

Reviews

Be the first to review The Gross-Zagier Formula on Shimura Curves.